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Abstract---Conical folds associated with dome and basin interference are analysed using equal-area plots, which 
provide data on the geometry of the fold surface and estimates of the finite shortening. To describe individual 
folds, they are subdivided into subareas defining the domains of each interfering fold set. The resulting plots 
demonstrate that numerous partial cones of distinct geometry are required to adequately describe the folded 
surface. To help identify the presence and accurately determine the geometries of such folds, the expected 
variations in conical fold geometry for interfering folds with varying hinge curvature, tightness and limb dips are 
analysed and illustrated with examples from North Canterbury. The resulting cone geometries are complex and 
often difficult to detect, which may in part explain the apparent absence of conical folds in some areas of dome 
and basin interference. Where parallel folds interfere, the divergence of poles to the conical fold surface and cone 
apical angle provide estimates of the finite shortening associated with folding. These shortening estimates are 
consistently larger than those determined by constructing profiles parallel to shortening along the hinge line of 
the second fold set. 

I N T R O D U C T I O N  

CONICAL folds c o m m o n l y  deve lop  due  to  d o m e  and  bas in  
fold  in t e r f e rence  ( R a m s a y  1962, Wi l son  1967, Sys t ra  & 
S k o r n y a k o v a  1980). W h e r e  the  g e o m e t r i e s  of  these  
i n t e r f e r ence  s t ruc tures  a re  va r i ab le  the  resul t ing  conical  
folds  will be  s imi la r ly  d iverse  and  b e d d i n g  o r i en t a t i on  
d a t a  sca t t e red .  C o n s e q u e n t l y  ind iv idua l  folds  m a y  have  
complex  g e o m e t r i e s  de f ined  by  severa l  cones .  In  these  
c i rcumstances  the  p re sence  of  conical  folds m a y  be  
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o v e r l o o k e d  and  the  o p p o r t u n i t y  to  def ine  accura te ly  the  
fold g e o m e t r y  lost.  

I t  is i n fo rma t ive  to  iden t i fy  conical  folds  as, unl ike  
m a n y  non-cy l indr ica l  folds ,  they  are  easy  to  def ine  
geomet r i ca l ly  wi th  the  a id  of  s t e r eog raph i c  o r  e qua l - a r ea  
p ro j ec t ions  and  m a y  p rov ide  es t ima tes  of  finite shor ten-  
ing. A fo lded  surface  de f ined  by  a m a t h e m a t i c a l  cone  
mus t  have  its g e o m e t r i c  axis ob l ique  to  the  surface  
( H a m a n  1961, S tauf fe r  1964, Sys t ra  & S k o r n y a k o v a  
1980). T h e  o r i en t a t i on  and  cu rva tu re  of  a conical  fold 
surface  can be  de f ined  by  the  inc l ina t ion  of  the  cone  axis 
and  the  angle  b e t w e e n  this axis and  the  fo lded  surface 
(Fig.  l a ) ,  which is half  the  apical  angle  of  the  cone  
(cyl indr ical  folds  may  be  r e g a r d e d  as conical  folds with 
an apical  angle  equa l  to zero) .  These  p a r a m e t e r s  a re  

CONICAL FOLD GEOMETRIC DESCRIPTION 
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Fig. 1. Geometric description of conical fold surfaces. (a) Cone shape and geometric elements, including cone axis and 
apical angle, for the Weka Pass Anticline, North Canterbury. (b) The same structure represented in an equal-area plot of 

poles to bedding. 

785 



786 A. NICOL 

measured directly from equal-area plots of poles to the 
folded surface (bedding in the cases illustrated), which 
are distributed along small circles (Fig. lb). The relative 
shortening associated with each of the interfering fold 
sets can be estimated using the cone apical angle and 
divergence of poles to the fold surface. 

The purpose of this paper is to model complex conical 
fold surface geometries (developed in association with 
dome and basin interference patterns) by analysing the 
expected changes in conical fold geometry for variations 
in the morphology of the interfering fold sets. Domainal 
treatment of the folding allows the conical fold surfaces 
to be identified, geometrically described and the inho- 
mogeneous shortening estimated. Examples from North 
Canterbury, New Zealand, provide illustration• 

axial surfaces and angular, gently-plunging hinges. Fold 
dimensions are variable, amplitudes and wavelengths 
ranging from 0.05 to 1.5 km and from 1.5 to 5.9 km, 
respectively• Typically fold surfaces are characterized by 
several cone geometries with steeply inclined cone axes 
(60-80°), and large apical angles (ranging from 100 to 
130°), locally reduced to 30-60 ° in the MacDonald 
Syncline. Folding appears to have developed in response 
to reverse faulting and thrusting in basement. The sur- 
face displacements of the faults are small in comparison 
to the fold amplitudes, and folding provides the best 
means of determining the finite strain. 

VARIATIONS IN CONE GEOMETRY 

NORTH CANTERBURY FOLDS 

Data are provided by analysis of complex early Pleis- 
tocene to recent dome and basin interference folds 
formed adjacent to the New Zealand plate boundary 
(Fig. 2). Folding, principally by buckling and flexural- 
slip, is developed in a strongly anisotropic sedimentary 
sequence of late Cretaceous to Tertiary rocks, which rest 
unconformably on multiply deformed Mesozoic grey- 
wacke basement• Laterally continuous Oligocene lime- 
stone units in the middle of the cover sequence form 
resistant ridges and dip slopes, which allow the fold 
geometries to be accurately defined• The two orthogonal 
fold sets (Fig. 2) are mainly open to gentle, with steep 

Conical folds vary in geometry both across and along 
interfering fold sets. This variation directly relates to 
changes in the curvature of the hinge zones, fold tight- 
ness and limb dips of the interfering fold sets. These 
features are first discussed separately, although their 
effect is cumulative. Where possible, fold surfaces 
influenced by fold terminations have been excluded 
from the North Canterbury examples• 

Hinge zone curvature 

Upright folds usually display a reduction in dip of the 
fold surface towards their hinge. The interference of two 
folds at a high angle to each other results in a reduction 
in dip of the fold surface towards dome and basin 
structures• Figure 3(a) depicts the expected change in 
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Fig. 2. Simplified geological map of the area from which all conical fold observations are drawn. Folding is emphasized by 
the outcrop pattern of Oligocene limestone units• 
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HINGE CURVATURE AND CONE GEOMETRY 
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Fig. 3. Schematic diagrams and equal-area plots demonstrate the expected (a) and observed (b) changes in cone geometry 
towards a fold interference basin structure. The arrows on the upper equal-area net indicate the reduction in small circle 

size, defined by the poles to the folded surface, into the basin. 

cone geometry and distribution of poles to the fold 
surface into a rounded fold interference basin. As limb 
dips decrease towards the basin (or dome) the apical 
angle of a cone which describes the fold surface (marked 
by the heavy line in Fig. 3a, schematic diagram) must 
increase and the small circle distribution of poles des- 
cribing the cone decrease in diameter (Fig. 3a, equal- 
area plot). When rounded folds interfere the cone apical 
angle must change continuously and many cones are 
required to describe the surface geometry. Angular 
folds, such as the ones developed in North Canterbury, 
prove much easier to describe and the number of cones 
required to approximate the fold surface curvature (evi- 
dent from the equal-area plots), imparted by the inter- 
fering hinge zones, is limited to one or two (Fig. 3b). 
Measurements on the fold surface are often not possible 
in hinge zones, consequently the effects of hinge zone 
curvature on cone geometries are often under- 
represented in equal-area plots. 

Fold set tightness 

The ratios of fold amplitudes to wavelengths and the 
associated tightness of respective fold sets have a pro- 
found effect on the fold interference cone geometry. 
Figure 4 demonstrates the expected change in cone 
geometry with different combinations of fold set inter- 
limb angles. Only if both fold sets are upright and have 
similar interlimb angles does the resulting cone have an 
apical angle approximately equal to the interlimb 
angles, with a steep cone axis and circular cross-section 
(Fig. 4, cones 1, 5, 8 and 10). Increasing the interlimb 
angles (i.e. decreasing the amplitude to wavelength 
ratio), increases the apical angle. 

When the folds are upright and the interlimb angles of 
the interfering fold sets are different, the resulting cones 
become flattened (with an elliptical cross-section) per- 
pendicular to the tightest fold set. The flattening be- 
comes more pronounced as the difference between fold 



788 A. NICOL 

set interlimb angles is increased, and is most obvious in 
the top row (cones 1-4) of Fig. 4. The flattened cone is 
best described by several partial cone surfaces with 
increasingly inclined axes (Fig. 4, cones 2-4). The apical 
angle of the cone surface approximately parallel to the 
tightest fold set increases and the apical angle describing 
the fold surface parallel to the second fold set decreases 
(Fig. 4, inset). Interfering folds with large differences in 
their interlimb angles are most accurately described by 
several cone surfaces, but will be approximately peri- 
clinal and exhibit short, cylindrical middle sections, and 
conical terminations. The fold surfaces in the MacDo- 
nald Syncline approach this extreme (Fig, cone 4), with 
interlimb angles of 43 ° and 146 °, respectively, generating 
steep limb cone axes and inclined hinge cone axes (Fig. 
3b). This example emphasizes the cumulative effects of 
the fold hinge zone and interlimb angles, with small cone 
apical angles on the limbs and large cone apical angles in 
the hinge zone. As the interlimb angle of one fold set 
tends to 0 ° or 180 °, the other fold set may become 
approximately cylindrical. Because interfering fold sets 
are unlikely to have identical interlimb angles 'flattened 
cones' with elliptical cross-sections should be common. 

Limb dips 

The geometry of fold interference cones become more 
complex when one or both of the fold sets are asymmet- 
ric. An upright asymmetric fold will exhibit variable 
limb dips, and when subject to interference folding will 
develop different cone geometries on each limb (Fig. 5). 
In cases where the cone axis is steep, increasing the limb 
dip decreases the apical angle of the conical surface 
describing that limb, while the converse is true for 
shallow cone axes. In North Canterbury however, the 
geometry is more complex and the steepest limb of one 
fold set (e.g. Fig. 5a, north limb) is often characterized 
by a conical surface with a steeply plunging cone axis and 
a relatively large apical angle, and the shallower limb 
(e.g. Fig. 5a, south limb) by a shallow cone axis (trend- 
ing parallel to one of the fold sets), and a smaller apical 
angle. 

COMPOSITE CONE GEOMETRIES 

The recognition of conical folds is generally reliant on 
having a single cone geometry defined by a well exposed 
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INTERFERING FOLD SET TIGHTNESS AND CHANGES IN CONE GEOMETRY 

Fig. 4. Predicted changes in the geometry of conical folds produced by changes in the tightness of the interfering fold sets. 
These changes in the fold set interlimb angles are inferred for areas of dome and basin interference patterns where the 

interfering fold sets are upright and symmetrical. Hinge zone curvature effects are neglected. 



Conical folds from New Zealand 

LIMB DIP AND CONE GEOMETRY 
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Fig. 5. Variation in cone geometry with changes in limb dip for the Onepunga Anticline, North Canterbury. (a) Three- 
dimensional representation of the fold (with cones superimposed). (b) Equal-area plot of poles to bedding. (c) Tabulated 

core geometries. Inset (d) shows morphologies of the interfering fold sets. 

regional fold or repeated small folds of similar geom- 
etry. However, conical fold surfaces that reflect the 
combined effects of interfering fold set morphologies 
may be irregular and apparently non-conical. The cumu- 
lative effects of these variables produce conical fold 
shapes that change both across and along the fold. The 
Timpendean Syncline (Fig. 6) provides a good example 
of changes in the resultant fold surface geometry due to 
slight variations in the morphology of the interfering 
fold sets. The fold surface geometry is mainly defined by 
cones with steep axes and large apical angles (Fig. 6), but 
the fold surface varies in shape from a simple conical fold 
(subareas 3 and 4), to a fold defined by two distinct 
conical surfaces (subarea 1 and possibly 2). In subarea 3 
the cone apical angle is approximately equal to the 
Timpendean Syncline interlimb angle and reflects 
mainly the influence of the fold tightness. While subarea 
4 appears to show the effects of a fold termination, as 
indicated by the reduced fold amplitude and cone apical 
angle. Conversely, subarea 2 is influenced by the differ- 
ent limb dips of the main syncline; the steeper limb has a 
steeper cone axis and larger apical angle than the shal- 
lower limb. Each subarea plot is limited to one or two 
conical segments, a function of the complexity of folding 
and the level of exposure in the hinge zones. If more 
bedding data were sampled from the hinges the distri- 
bution of poles to bedding would undoubtedly become 
more diffuse. Up to four distinct cone geometries have 
been identified in fold subareas where the hinges are 

well exposed (one on each limb and two describing the 
reduction of bedding dip into the hinge). As the number 
of cone geometries required to describe the fold surface 
increases inevitably their equal-area plots become 
increasingly difficult to interpret without a reduction in 
subarea size. For example, if all the data from the 
Timpendean Syncline are plotted on a single equal-area 
net (Fig. 6, all data), the bedding-pole distribution is 
more diffuse than those of the subareas, and although 
there is some indication that the folds are conical, both 
the variation and gross fold surface geometries are 
masked. This point is reiterated by many of the folds in 
North Canterbury. 

Despite the continuity of the fold surface many of the 
equal-area plots from North Canterbury display dis- 
tinctly separated and discordant bedding-pole distri- 
butions. The discontinuity between plot segments 
appears to coincide with angular fold hinges, which 
accommodate marked changes in fold surface geometry 
over short lateral distances. 

Analytical recommendations 

To recognize and adequately describe composite coni- 
cal folds developed in association with dome and basin 
fold interference, geometrically distinct parts of the fold 
surface must be analysed separately. Essentially where 
the cones relate directly to the interfering fold sets the 
aim is to locate accurately the inflexion lines of each of 
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the interfering fold sets. This presents a considerable 
problem, particularly if the folds are rounded. Similar 
problems have been encountered by Turner & Weiss 
(1963), who recognized the need to subdivide hetero- 
geneous folds into cylindrical fold subareas. Their solu- 
tion was to place all fold data on a map and repeatedly 
redefine the subarea boundaries until different geo- 
metric elements, as defined by stereographic plots, are 
separated into discrete domains. This technique must be 
combined with an analysis of the changes in fold surface 
and axial surface orientations. Ramsay (1967) suggested 
two simple rules for detecting changes in fold axial 
orientations: (1) the strike of vertical beds is always 
parallel to the trend of the axial direction of folds; and 
(2) if beds have a dip direction which is parallel to the 
strike of adjacent vertical beds, then this angle of dip is 
equal to the angle of plunge of the fold axes. Further to 
this, if the cone axes are steep, lines drawn parallel to the 
bedding dip azimuth will tend to converge towards a 
common point in each subarea. In Fig. 6 placement of 
the subarea boundaries was helped by the angular 
nature of folding and inspection of structure contours, 

the limit of which approximately define the east-west 
domain boundaries. These are complemented by north- 
south domain boundaries, which serve as limits to the 
data plotted in the adjacent nets. Having crudely defined 
geometrically distinct portions of the fold surface it may 
be necessary to separate measurements from the fold 
hinges and limbs. This will allow the effects of the hinge 
zone curvatures and limb morphologies to be assessed 
independently and may be aided by limited exposure of 
the fold hinge zones. Clearly angular folds with confined 
hinges and straight to slightly curved limbs, formed 
within a brittle deformation regime, will be much more 
amenable to this type of analysis than rounded struc- 
tures represented by compound curves. Only when the 
fold is divided into domains can the true geometry 
imposed by fold interference be determined. 

Early recognition of the presence of dome and basin 
fold interference or irregular fold geometries may pro- 
vide the key to identifying conical folds and separating 
out the cone geometries. Conversely, conical folds may 
provide an indication of previously unrecognized subtle 
fold interference patterns. 
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Fig. 7. Schematic diagrams illustrating the divergence of poles to conical fold surfaces and their relationship to the 
interfering fold axial surfaces. (a) Hypothetical situation and (b) data from the MacDonald Syncline. 

CONICAL FOLD SHORTENING 

Where the fold surfaces can be described by discrete 
cone geometries and their curvature reflects parallel 
folding, inhomogeneous shortening associated with the 
development of each fold set may be quantified directly 
from equal-area plots. This can be achieved in a number 
of special circumstances by analysing the divergence of 
poles to the fold surface and using the cone apical angle 
to estimate the fold interlimb angle. 

The divergence of poles to a conical fold surface along 
a small circle (Fig. 7) provides a measure of the curva- 
ture of that surface. If it is assumed that the arc curvature 
is a product of folding of layers without signficant layer- 
parallel shortening, the arc to cord length ratio (Fig. 8) 
will provide a measure of the relative shortening 
imposed normal to the direction of maximum curvature. 
This becomes useful if the direction of maximum curva- 
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Fig. 8. Schematic diagram illustrating the relationship between inter- 
fering fold set geometries and the basis for shortening estimates 
derived from analysis of conical fold surfaces and hinge line profiles. 
Inset shows the arc-chord relationships used to derive the relative 

shortening estimates. 

Table 1. A comparison of shortening estimates deter- 
mined using the divergence of poles to conical fold 
surface geometry and fold hinge line profiles for six folds 

(located on Fig. 2) in North Canterbury 

Shortening (%) 
Cone surface Fold hinge 

Fold pole divergence profile 

1 16 14 
2 15 8 
3 13 8 
4 16 11 
5 12 6 
6 9 5 

ture is parallel to the axial surface of one of the inter- 
fering fold sets (Fig. 7). In effect, the distributions of 
poles to the fold surface must be symmetrically disposed 
about one or both of the axial surfaces of the interfering 
fold sets. Alternatively, if two concentrations of poles, 
one from each fold limb, rest on the same small circle 
(Fig. 7b) the cone apical angle is approximately equal to 
the interlimb of the fold set which bisects the partial 
small circles. The apical angle provides a means of 
estimating the interlimb which can be used in conjunc- 
tion with the fold amplitude to determine the relative 
shortening. 

In North Canterbury the divergence of fold stirface 
poles can be used for folds where shortening estimates 
are between 5 and 20% (Table 1), although it is possible 
to determine shortening up to 36%, which is the theor- 
etical limit of parallel folding (de Sitter 1958). For 
example data from the limbs of the MacDonald Syncline 
plot on two partial small circles (Fig. 7b). The diver- 
gence of poles on each limb is approximately 105 ° which 
implies a 16% shortening in a NNE-SSW direction 
(Table 1, fold 4). A more conventional method for 
estimating the shortening associated with the second 
fold set is to construct a profile along the hinge line of the 
first fold set. Table 1 provides a comparison of shorten- 
ing estimates for six folds using conical fold surface pole 
divergences and fold hinge line profiles, and demon- 
strates that the cone geometry technique gives consist- 
ently higher values of shortening. The reason for this can 
be demonstrated by taking a piece of paper, which may 
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be regarded as representing a subarea or domain of the 
interfering folds (i.e. an area bounded by the inflexion 
lines of the interfering fold sets), and folding the paper  
into an upright horizontal syncline. If  this fold is sub- 
sequently refolded by a syncline of similar geometry  at a 
high angle to the first fold the ends of the paper  (which 
were vertical after the development  of the first fold), will 
become inclined and the horizontal distance across the 
second fold must decrease away from the hinge of the 
first fold set (Fig. 8). Therefore  shortening associated 
with the second fold set increases from the hinge to the 
inflexion line (and limbs) of the first fold set. This 
analysis suggests that in some areas of  dome and basin 
interference the shortening is locally variable between 
the hinges and limbs of the interfering fold sets. 

CONCLUSIONS 

therefore provide information about these character- 
istics. The relative shortening of each of the interfering 
fold sets can be determined from equal-area plots by 
analysing the divergence of poles around a small circle, if 
these are symmetrically disposed about one or both of 
the axial surfaces of the interfering fold sets and the folds 
are parallel. These estimates are consistently larger than 
those derived from hinge line profiles and provide a new 
technique for estimating shortening in areas of dome 
and basin interference. 
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Stereographic analysis of dome and basin interference 
folding is often regarded as being ambiguous and un- 
rewarding because poles to the folded surface produce 
diffuse distributions. As shown by North Canterbury 
examples,  interference surfaces are more  commonly 
characterized by several cone geometries which change, 
both across the fold and along the hinge line. Recog- 
nition of interference folds as composite  surfaces made 
up of conical segments with varying apical angles and 
cone axes allows the geometry  of the folds to be de- 
scribed and quantified in detail. The variations in cone 
geometry,  defined by analyses of subareas,  relate 
directly to changes in the hinge curvature,  interlimb 
angle and limb dips of the interfering fold sets, and 
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